From Giving Birth to Paid Labor: The Effects of Adult Education for Prime-Aged Mothers

Annette Bergemann *
Gerard J. van den Berg †

January 18, 2013

Abstract

Women without work after childbirth are at risk of losing their connection to the labor market. However, they may participate in adult education programs. We analyze the effect of this on the duration to work and on the wage rate, by applying conditional difference-in-differences approaches. We use Swedish matched longitudinal register data sets covering the full population. The Swedish adult education program is unprecedented in its size, and enrollment is universally available at virtually no cost. We focus on low-skilled women who have recently given birth. We take account of program accessibility, selection issues, course heterogeneity, the income received during adult education, parental leave, and child care fees. Adult education shows positive effects for the unemployed with respect to both, the employment probability and wages. In the light of a low participation rate we try to understand the enrollment decision from the mothers’ point of view, using the estimates to calibrate a job search model. The calibrated model unambiguously predicts that participation is beneficial for the individuals. We conclude that there are strong non-pecuniary factors that make young mothers prefer not to enter adult education.

*Department of Economics, Mannheim University; IFAU-Uppsala; IZA.
†Department of Economics, Mannheim University; IFAU Uppsala; CEPR; IZA; IFS.

Keywords: evaluation of adult education, job search model, female labor supply, wages, participation, unemployment, schooling, conditional difference-in-differences.

JEL Codes: H43, J68, J64, J24, C14.

Acknowledgements: We are grateful for helpful suggestions from Louise Kennerberg, Ann-Sofie Kolm, Laura Larsson, Linus Lindqvist, Daniela Lundin, Erik Mellander, Eva Mörk, Oskar Nordström-Skans, and participants in conferences in Uppsala, Essen, Budapest, Oslo, and Nuremberg, and a seminar at IFAU Uppsala. We thank Linda Petterson from the local employment office in Stockholm for giving us information on institutional features and on the decision process by case workers concerning reintegration. We thank Eva Mörk for generously giving us data on child care costs. Linus Lindqvist and Louise Kennerberg provided excellent help with the register data. We thank the Swedish National Labour Market Board (AMS) and Statistics Sweden (SCB) for their permission to use the data, and IFAU for financial support. The work in this paper is part of the ESRC Research Program “Advancing Programme Evaluation Methods”.
1 Introduction

In OECD countries, the average employment rate of low-skilled individuals is substantially lower than of high-skilled individuals (66% vs. 87% in 2005, see OECD, 2007), and among the lower skilled, the labor market outcomes for mothers with children are particularly weak. In 2005, the OECD average employment rate of women with less than secondary education is only 48% (OECD, 2007), and it is even lower if they have children (OECD, 2002). The fact that mothers with young children constitute a particularly weak labor market group has potentially harmful long-run effects. They may postpone a return to the labor market, for example until the child goes to school, or they may decide to have another child, and in the intervening years, the women may lose skills. This may further reduce their incentive to return to work. The ensuing income loss may negatively affect the child’s development. In order to help these women to (re-)integrate in the labor market, and to raise their productivity, it is therefore useful to obtain insights into the effectiveness of active labor market programs and education programs for this group.

During the past decades, a substantial amount of research has been conducted on the effect of active labor market policies on the individual employment prospects (for overviews see e.g. Fay, 1996; Heckman, LaLonde and Smith, 1999; Martin and Grubb, 2001; and Calmfors, Forslund and Hemström, 2001). It is commonly acknowledged that effects are heterogeneous. Often, employment effects are larger for women (Bergemann and Van den Berg, 2008; Heckman, LaLonde and0 Smith, 1999; King, 2004). At the same time, participants with a low initial level of education benefit little from educational training (Heckman, LaLonde and Smith, 1999). However, little is known concerning effects of active labor market policies and education programs on non-working mothers with young children, presumably because the mothers often do not qualify for benefits that entail entitlement to active labor market programs. After a child caring phase, women may not be eligible for unem-
ployment insurance and the associated training programs provided through employment offices.

In this paper we examine the effect of participation in adult education programs on the duration to work and the labor income of low-skilled women who have recently given birth. Adult education is a relevant program for this group, because its access is not restricted to those entitled to unemployment insurance or welfare benefits, and it is therefore also open to mothers who do not have any source of income next to their partner’s income.\footnote{Recently, life-long learning, adult education, and employability have become focal points in the labor market policies of many advanced economies (see e.g. OECD Employment Outlook 2004). It is expected that these economies will face more turbulent conditions than in the past, and that the development of novel production technologies will proceed at a sustained high speed, and this requires a flexible and suitably skilled workforce.}

We focus on Sweden. Despite Sweden’s well-known success in integrating skilled women into the labor market, it faces the same problems as basically all OECD countries with respect to women with less than upper secondary education. Sweden is well-suited for our analysis because of the magnitude of its adult education program Komvux. Sweden has a long tradition of training adult workers (see e.g. Ministry of Education, 1998; Friberg, 2000; and Ministry of Industry, 2001). In 1997 the program was modernized, and, in the period 1997–2002, the program was dramatically expanded in order to raise the skill level of low-skilled workers to a medium skill level, accordingly focusing on workers without work and with a low level of education. The size of the program is unprecedented: for example, over the period 1997-2000, the number of participants exceeded 10% of the labor force. Clearly, the program reflects a great deal of optimism about the extent to which an adult’s human capital can be improved.

For the empirical analysis, we use a combination of longitudinal administrative register data which contains the full population of individuals in Sweden. The dataset matches detailed records from employment offices, unemployment insurance agencies, the income tax agency, and the adult education register. The latter contains records of all adult education
courses that are followed.

The data include wage register data by employer. These enable the construction of an accepted-wage variable, which is obviously more informative on productivity effects than annual income from e.g. income tax registers. Wage-rate outcomes should be less subject to pre- and post-program participation dips. Concerning income out of work, we have separate information on unemployment benefits, adult education grants, parental leave benefits, and child care fees. The merging and simultaneous use of these data is a non-trivial task as it requires the combination of different sources.

We do not address equilibrium effects of adult education. Albrecht, Van den Berg and Vroman (2009) calibrate the effects of Swedish adult education in the period 1997-2002, taking into account that the composition of jobs may respond in equilibrium to changes in the skill distribution. Björklund et al. (2005) show that Komvux led to a large flow of teachers from regular secondary education to adult education, and they argue that the program therefore may have generated substantial negative external effects on the quality of regular education. Such effects increase the social costs of the program, but addressing this is beyond the scope of the present paper. Since mothers with small children constitute a small fraction of all participants, it is unlikely that they contribute to equilibrium effects. We also do not aim to address the use of adult education by young individuals who left the regular school system with low educational levels, as a short-cut towards regular university education (see e.g. Björklund et al., 2005, and Ekström, 2003, for discussions). For this reason we exclude individuals aged below 25 from the analysis.

To date, some studies have examined the effects of adult education in Sweden on individual labor market outcomes. Ekström (2003) estimates the effect on annual income of following adult education in the early 1990s, using straightforward difference-in-differences. She finds no positive income effects. Albrecht, Van den Berg and Vroman (2004) use similar methods to study effects on annual income and employment status, and they find no
significant effects for women aged between 25 and 40. The latter study does not distinguish between recent mothers and other women, and its sample size may be too small to detect any effects. Several other studies have compared individual labor market outcomes between unemployed individuals who enroll in Komvux and unemployed individuals who enroll in labor market training, using propensity score matching or IV methods (see e.g. Axelsson and Westerlund, 1999, and Stenberg and Westerlund, 2008). The results depend strongly on the outcome measure, the evaluation method, and the type of labor market training and subpopulation considered.\(^2\)

Our estimation results indicate positive average effects on the treated on both, the employment probability and wages. Because participation is not restricted, this raises the question why participation rates are low. We use the effect estimates to address the enrollment decision from the point of view of the mother. To this aim we calibrate a dynamic job search model augmented with adult education. The model distinguishes between effects on the rate at which jobs are found and effects on wages, and it allows for subsequent childbirths. Calibration requires additionally gathered information on the income associated with parental leave, the income grant during Komvux participation, and the costs of child care.

The model assumes that the enrollment decision is taken with an eye on the expected discounted future utility streams of the available options. These streams also depend on short-term outcomes that are typically ignored in the treatment effect literature. For example, an evaluation study may find that the average effect on the employment probability is positive, but for an eligible individual the present discounted value of participation may

\(^2\)Another related literature considers effects of parental-leave policy parameters on the time until mothers return to work after childbearing (see e.g. Han et al., 2008, and references therein, and Eriksson, 2005, for a natural experiment in Sweden). Han et al. (2008) also consider effects of the welfare level and entitlement and the child care subsidy level, using U.S. data. Lundin, Mörk and Öckert (2008) evaluate effects of child care subsidies on female labor supply using Swedish data. Some recent studies also provide evidence on the effects of (paid) parental leave on long-run outcomes of the child; see Dustmann and Schönb erg (2008) and Carneiro, Løken and Salvanes (2008).
be negative because of the time needed to complete the program. Our analysis produces
the additional interesting insight that small changes in the employment probability may
be associated with large changes in the expected discounted value of program participa-
tion and relatively large changes in the exit rate to work. As a result, the unemployed
individuals’ present value can be greatly enhanced (and their unemployment duration can
be substantially reduced) by a program that only leads to a slightly higher employment
rate. This is because employment rates are typically rather unresponsive functions of the
job offer arrival rate.

The outline of the paper is as follows. Section 2 discusses institutional features of the
environment of recent mothers in Sweden, including the adult education program. Section
3 describes the data, and Section 4 outlines the estimation method we use and discusses
the empirical implementation. Section 5 provides the estimation results. In Section 6 we
analyze the enrollment decision using a structural job search model. Section 7 concludes.

2 Adult education in Sweden

By now, many studies provide detailed descriptions of Komvux and their participants
(see, for example, The National Agency for Education, 1999, Axelsson and Westerlund,
therefore restrict ourselves to a summary.

Our observation window concerning participation in Komvux runs from 1997 to 2002.
In this period, the adult education program was larger than ever before in Sweden. The
main objective of the program was to increase the skill level of adult low-skilled workers to
the medium skill level, thereby helping these individuals strengthen their position in the
labor market. Here, low-skilled means having an educational attainment below the level

3 The program in these years is also denoted as “Adult Education Initiative” and “Knowledge Lift”.
of a 3-year “gymnasium” degree, while medium skilled means having attained this level but not any education beyond that. The 3-year gymnasium degree roughly corresponds to the upper secondary education level or senior high school. Since 1995 this is the lowest possible upper secondary school diploma, whereas before that many individuals left high school with a 2-year degree. The program particularly targets low-skilled individuals that are unemployed or have withdrawn from the labor force. In fact, low-skilled employed and medium-skilled unemployed workers or individuals that have left the labor force are also often eligible for Komvux, and the enrollees contain many low-skilled employed workers, working part time or full time. Komvux also includes courses that do not aim at the attainment of a medium skill level but rather an improvement within the class of low-skill sublevels.

Komvux focuses on the enhancement of general skills (for example, English, Swedish, mathematics, history, and physics), as opposed to specific skills needed for particular professions. However, part of Komvux can be spent in vocational courses, work placement and orientation courses. Orientation courses constituted a novelty in 1997 (as well as vocational courses). The aim of orientation courses is to ascertain the educational needs of participants by comparing the current educational level with potential job prospect and wishes.

In principle, it is possible to combine upper secondary courses with studies at an elementary level or with a program organized by the National Labor Market Board for the unemployed. The curricula and grade criteria for the attainment of the medium skill level are roughly the same as in the regular upper secondary education system.

Komvux is organized at the municipal level. The organization may be joint with other municipalities. A municipality may purchase the services of education providers and/or cooperate with them. However, the municipalities are responsible for admission into Komvux. A single course typically starts twice a year and covers a half-year term. Many courses are
offered on a full–time basis, but some are offered as a part–time course or, more specifically, as an evening course.

At the level of the individual, admission into Komvux is in principle free. The underlying view is that Komvux participation must be led by the demand for education. A participant should have ample scope for personal choice regarding the type of study and its timing and location. Whether one can participate in a desired course only depends on the availability of courses and on the entry skill level requirement. Recruitment of participants is sometimes carried out in cooperation with trade union organizations or local employment offices.

Komvux participants may be eligible for a range of income grants and financial study support grants. Most importantly, enrollees may receive “special grand for education and training” (UBS). The amount of this is equivalent to unemployment insurance (UI). UBS is only given to Komvux participants who are entitled to UI payments at the date of entry into the program. They must be registered as unemployed or have been employed in the last 5 years and being replaced at the workplace by a long-term unemployed individual. Moreover, the worker must be between 25–55 years old inclusive at the date of entry into the program and must study at the elementary or upper secondary level or attend an orientation course. The funding for the UBS grants is limited. Priority is given to workers without completed education at the elementary level and workers who intend to study Swedish, English, mathematics or social sciences. The grant is typically given for a maximum of one year. Because of the cap on UBS funding, a Komvux participant may not be granted UBS, and she may not know a long time in advance whether UBS will be granted to her or not.

Additionally, special adult study assistance and funding are available as a combination of a grant and a loan. Unemployed individuals can for example apply for a grant (SVUXA) in case they had been working for 3 year and are at least 21 years old. The grant amounts to 65% of the UI benefit or some minimum amount in case an individual is not eligible for
unemployment benefits. The funding for SVUXA is limited. A first come, first serve rule is applied.

Employed individuals, individuals taking care of children/handicapped persons or handicapped individuals can apply for a different type of grant in case they study on a elementary or upper secondary level (SVUX). Again, funding is limited, with priority for individuals with a low education level who are in need of education and take a break from work in order to study.

Individuals who receive SVUXA or SVUX are entitled to a supplementary loan from the government. This loan and the grant together should be equivalent to UI.

Many participants rely on other financial resources than those listed above. Notably, they may depend partly or fully on a partner’s income. An individual who is full-time in Komvux is considered to be out of the labor force unless he/she earns income on the side.

The state channels funds to the municipalities to finance Komvux. The amount of funding depends on the municipality’s unemployment rate and skill level distribution, and on the scope of the municipality’s program. A conservative estimate is that, in the first years of its existence, the state spent at least SEK 3.5 billion (US $400M) per year on Komvux. This equals almost SEK 1000 per labor force participant in Sweden. The spending covered the creation of some 100,000 annual study slots as of 1997. In practice, the funding was more than sufficient to meet the demand for Komvux (see Statskontoret, 1999). This fact is important for our analyses because it implies that there was no quantity rationing.

The following gives an indication of the size of the program in terms of numbers of enrollees. In the fall of 1997, 538,004 individuals (out of a population of 8M) were (i) aged between 25 and 55, and (ii) participated in the municipal adult education, or were unemployed (in the sense of actively searching), or participated in one or more training programs. About 220,000 of these participated in Komvux, and of these about 56,000 received UBS. About 35,000 Komvux participants were also registered as unemployed, so they are
necessarily only part-time in Komvux. Another 5,000 participated both in Komvux and in employment training. The number of registered unemployed, including those participating in Komvux and/or training programs was about 330,000. For comparison, the number of pupils in regular upper secondary school was about 300,000, while the number of individuals participating in employment training programs was about 40,000. The figures do not sum to the total of 538,004 because some individuals fall into more than one category. Typically, the number of individuals enrolled in Komvux is about 50% larger than the full-time equivalent of the number of occupied slots. This indicates that many enrollees are part-time participants. Skolverket (2001) provides a wealth of additional information on the composition of participants and courses.

3 The data

3.1 The data registers

Our dataset covers the population of inhabitants in Sweden. These individuals have been longitudinally traced in a number of different administrative registers covering (subsets of) the period 1994–2003. Our dataset matches the records of individuals across these registers.

The first register is the official Swedish register of labor market statistics RAMS. It is obtained from yearly income tax declarations. It includes information from the population register, which is used to create the sample. The register provides observations on an annual basis of various types of income that each individual may receive together with the months an individual may work. Specifically, we observe individual wage incomes and

4 Participation in adult education is so large that the substantial increase in the unemployment rate in 2004 has been attributed to the cutbacks in the adult education program shortly before, the argument being that many individuals who would otherwise have been recorded as non-participants due to their participation in Komvux are now registered as unemployed instead (Swedish Institute, 2005). Note that this suggests that quantity rationing may be an issue after our observation window.

5 See the Appendix for additional information on the institutional background.
income from self-employment. The RAMS data also provide information on the employer. More information on income definitions is provided in Subsection 3.2.

The second register is the so-called HÄNDEL dataset, which is based on registers at the employment office and is compiled by the Swedish Labor Market Board. It includes all individuals who ever registered as unemployed starting from September 1991. Registration is voluntary but is required in order to receive or apply for unemployment compensation or to participate in any type of labor market program, so in fact almost all unemployed are in these data (according to Carling, Holmlund and Vejsiu, 2001, more than 90% of the individuals who are ILO-unemployed according to labor force surveys also register at the employment offices).

The HÄNDEL data provide labor market histories for all its individuals on a daily basis, with dates of transitions between different labor market states and between open unemployment and participation in training programs and work experience programs. However, because participation in Komvux is regarded as an out-of-the-labor-force activity, HÄNDEL by itself does not allow for observation of spells of Komvux participation.

The third register (ASTAT) is from the unemployment insurance fund. It provides week by week information on the amount of unemployment compensation that is received.

The fourth register (KOMVUX) contains individual records on participation in any adult education program. These data are available for the years 1985–2002. From this we can follow participation in adult education on a basis of six-month periods at the individual level. Therefore, for all individuals for all semesters there is a specific variable recording whether the individual has been in Komvux in that semester. This includes those whose participation is subsidized as well as those who do not get subsidy. There is also information about whether the course(s) taken were day or evening courses, and about the municipality where the course was taken. For the years 1997–2002, additional detailed information on adult education experiences is available, like course content and
hours attended. The register is available until and including the year 2002.

The fifth register (LOUISE: Database for Education, Income and Employment) contains detailed information on additional income sources on an annual basis (i.e. educational grant, paternity leave benefits, social allowance) and individual specific information (i.e. education, municipality and marital status). These data are collected by Statistics Sweden.

In addition, we use the “generation register”. This data set provides information on the month of birth and identifiers for the parents.

3.2 Variable definitions, sample selection, and data summaries

The Appendix to the paper contains a detailed description of the data registers, the variables in the registers, and the way we select our sample and construct the variables of interest from these registers. We also provide an account of the practical problems and inconsistencies that arose. In this subsection we focus on the main issues.

We restrict attention to women who are aged between 25 and 45 on December 31, 1996. This is because individuals below 25 have access to different active labor market programs, and have different educational opportunities and remuneration eligibilities while unemployed or in education (see e.g. Larsson, 2003). As noted in Section 1, young individuals who left the regular school system with low educational levels may use Komvux as a shortcut towards regular university education (see e.g. Ekström, 2003). With the age restriction we basically avoid evaluating these cases. In the event that we nevertheless observe women going to university we exclude them from our analysis. In the context of our evaluation approach (see also Section 4) this restriction is equivalent to the assumption that women already plan to go to university the moment they go into Komvux, i.e. going to university is not regarded to be an outcome of Komvux but part of an educational decision. We also conducted a sensitivity analysis by including those women who attend university. Our results remain basically the same.
We only consider low-skilled individuals, i.e. having less than three years of upper secondary education in 1996. This restriction is consistent with the main Komvux objective in 1997–2002 to raise the skill level of low-skilled workers. We exclude individuals who went into Komvux in the time between 1996 and the moment of childbirth, since these may have already increased their skill level in that time interval. The modernization of Komvux was implemented starting in the second half of 1997 (which we denote by 97-II). We take this as the first possible treatment semester. We focus on women who have given birth in 1996 and after. The major increase in the size of Komvux ended at the end of 02-II. Since we do not have many time periods after 02-II in some essential data registers, we decide to stop following individuals after 03-II. In order to be able to observe women for a sufficient amount of time after childbirth, we restrict attention to women giving birth in 00-II or earlier.

We assume that each childbirth in this period of 96-I to 00-II is immediately followed by a 10-month maternity leave period. This equals the average length of the maternity leave period in those years (Eriksson, 2005). Since then the average length has been increasing, and this has led to the common perception that women tend to have maternity leave periods of at least one year. After maternity leave, the individual can move between the states of Komvux, unemployment, non-participation, employment, “bearing another child” and participation in labor market training. We focus on the effects of Komvux for women who are unemployed or out-of-the labor force at some point after the maternity leave. We stop following individuals after a transition into “bearing another child” or labor market training program (see Table 1 for a summary of the main selection criteria and the Appendix for a detailed description).

We decided to time-aggregate the outcome variables into a semester format. We there-

6See the appendix for a description of the institutional settings concerning maternity leave.
7In a sensitivity analysis with respect to the treatment effects, we also checked whether our results change when assuming a 12-month maternity leave period. And in fact, they did not.
fore assign one state to each individual in each semester. The assigned state is the most dominant state among the actually occupied states in that semester, in the sense of covering the largest number of days (see the Appendix for details). We also assign an income variable to this most dominant state. The calibration analysis also requires income levels in counterfactual states.

The construction of the employment income (i.e. wage) variable deserves some discussion. These are taken from firm registers. Specifically, the employment information and the wage data is taken from the wage information which firms are obliged to give to the tax authorities. For every calendar year, all firms have to inform the tax authorities about the employment duration of each employee (on a monthly basis) and on his/her yearly wage. The employment duration of an individual in a specific year is given by the start month and the end month. In addition, there is a variable for the wage paid during this employment relationship. As mentioned above, we construct from this information a semesterly wage variable. It should be pointed out that this wage data is less affected by employment/hours variation than yearly income data which is often used in evaluation studies (see also section 5). Note also that Nordström-Skans et al. (2009) show that the wage distribution based on the average monthly wage given by the RAMS data reflects very well the actual wage distribution, thus measurement error should not be a problem here.
3.3 Descriptive statistics

Table 2 gives an overview over the labor market situation of the low-skilled mothers in our sample. Their employment rate in the first half of 1995 equals 49%. When comparing the distribution of labor market states before and after the maternity leave, it becomes obvious that the proportion of employed women stays relatively constant with around 62% having a job. The proportion of unemployed vs. out-of-the-labor-force changed slightly. Before maternity leave 33% were unemployed and 5% out-of-the labor force, whereas two semesters after the maternity leave 31% were unemployed and 8% were out-of-the-labor-force, indicating some loss of labor market attachment among those women.

The relatively low employment rate in 1995-I compared to the employment rate before and after maternity leave is partly due to the worse labor market situation in 1995 compared to later years and partly due to the conditioning on being before and after maternity leave. In contrast, in 1995-I some women are also in maternity leave which are then automatically counted as nonemployed.

These figures indicate that child birth does not increase the risk of losing a job, at least not immediately after the child is born. The reason for this can surely be found in the job protection legislation which obliges firms to re-hire women after the parental leave. Obviously, this raise the question why low-skilled mothers have such a low employment rate. One reason could be that it is more difficult to return for these women to work in case they have lost their work. Note, however, that in our analysis, we take the low employment rate as given and focus on whether adult education can help to improve the labor market situation of low-skilled mothers in the event that they are non-employed at some point after maternity leave.

Table 2 also depicts participation rates in adult education. Hereby, we distinguish two different forms of participation. Participation in the broader sense encompasses all forms of participation, i.e., as soon as attendance is at least 1 hour. In contrast, participation in the
narrower sense only includes women who attend courses of adult education for a significant amount of time and intensity, which we define as participation for at least 350 hours during 2 to 4 semesters. This is equivalent to at least half a year in a regular upper–secondary school.

The highest participation rate in adult education can be found among women who are unemployed after maternity leave. 39% of these women go at a later point in time into the Komvux program for at least 1 hour. However only 19 % go into Komvux for a significant amount of time and intensity. The group of women who are out–of–the–labor–force have the second highest participation rate with about 23% for at least 1 hour, but only 9 % for a significant amount of time and intensity. Although women who are employed after maternity leave have the lowest probability of going in Komvux, nevertheless still 17%, respectively 7% participate.

Table 2: Labor Market Situation of Low–Skilled Mothers

<table>
<thead>
<tr>
<th>Employment rate in 1995-I</th>
<th>49%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employment states in semester before maternity leave:</td>
<td></td>
</tr>
<tr>
<td>employed</td>
<td>62%</td>
</tr>
<tr>
<td>unemployed</td>
<td>33%</td>
</tr>
<tr>
<td>out of the labor force</td>
<td>5%</td>
</tr>
<tr>
<td>Employment states two semester after maternity leave:</td>
<td></td>
</tr>
<tr>
<td>employed</td>
<td>61%</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>unemployed</td>
<td>31%</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>out–of–the labor force</td>
<td>8%</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Recall that here as well as in the other tables below, employment rates and employment states are semesterly constructs.

In our evaluation we focus on women who are either unemployed or out–of–the labor force just before participation in Komvux, estimating the treatment effects of a raise of the skill level from low-skilled to medium-skilled separately for these two groups. Accordingly,
we consider an individual as participant if she goes into Komvux following the narrower definition of participation. We opt for this definition because we want to evaluate the labor market effects for the case that a women seriously participates in Komvux in order to upgrade the skill level to medium-skilled against not participating at all during our observation window. Remember that we have already excluded those women who also want to go to university. Consequently, the control group of nonparticipants consists of those who are either unemployed or out-of-the-labor-market at some point after the maternity leave and do not follow a course of Komvux at all during our observation window.

Concerning the control group different choices are conceivable. One strand of the evaluation literature, for example, views future participants as part of the control group (see Abbring and Van den Berg 2003; Sianesi 2004). We do not use this approach here because we want to evaluate participating vs. participating not at all, rather than participating now vs. participating (perhaps) later. The main advantage of our definition is that we are able to make a clear link to the job search model, where individuals make once the decision to participate or not (see subsection 6.1). In addition, one could also view those as part of the control group that do not participate intensely in Komvux. A sensitivity analysis showed that such a approach would not change our results (see also section 4).

Concerning unemployment, our sample consists of approximately 23,000 women whereof approximately 4,000 (17%) attended Komvux (see Table 3).

Among those who did not enter Komvux, 24% are employed 5 years after their maternity leave, 15% are unemployed, 5% are out-of-the-labor-force, 26% had another child in the meantime, 10% went into a labor market training program, and 20% can not be observed anymore due to the end of the observation window.

Participants, in contrast, are more likely to be observed either employed (35%) or unemployed (32%) 5 years after maternity leave, less often to have another child (9%), go less often into labor market training (4%) or reach the end of the observation window.
(15%). Only, the proportion of women who leave the labor force is similarly high among the participants and the nonparticipants. Once former participants found a job they have a slightly higher wage than nonparticipating women. Another noteworthy fact is that the proportion of Scandinavian and Non-Scandinavian women is relatively similar among the participants and then nonparticipants.

Naturally, it is very interesting to investigate which type of courses women attend and whether specific courses work particularly well. Next to the overall effect, we will evaluate whether course trajectories with a large content of the most elementary courses, i.e. more than 25% of mathematics or more than 25% of English and Swedish work particularly well. Due to the focus on the percentage we not only emphasis the importance of the total amount of hours spend on the elementary course (i.e at least 87.5 hours) but also emphasis the relative importance of the elementary course in the whole study trajectory. The downside of this definition lies in the fact that it is correlated with the total hours of study. In addition, we will also check the effect of course trajectories that contain an orientation course, which were then newly introduced. Only 9% of the women followed a course trajectory that contained more than 25% Mathematics. Also the proportion of women following English of Swedish more than a quarter of the time (32%) or some orientation courses (27%) is not particularly high. the highest proportion of women (86%) follow other courses than Mathematics, English and Swedish, or orientation courses for a significant amount of time. In total, 88% of the unemployed women who participate in Komvux, received a grant (see Table 4).

Our sample contains approximately 3,000 Non–Scandinavian women of whom 17% participated in Komvux, a similar participation rate as for the Scandinavian women. The main differences between the Non-Scandinavian and the Scandinavian women lie in the

8 Other elementary subjects are for example history, social science and physics.
9 Additional categorization is not a straight forward task as women have ample freedom to choose from a very large variety of courses and combine these different type of courses.
Table 3: Evaluation Sample: Unemployed Before (Potential) Participation

<table>
<thead>
<tr>
<th></th>
<th>participants</th>
<th>nonparticipants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country of origin:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scandinavian</td>
<td>89%</td>
<td>88%</td>
</tr>
<tr>
<td>Employment states 5 years after maternity leave: (Excluding participants who still need to finish Komvux)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employment</td>
<td>35%</td>
<td>24%</td>
</tr>
<tr>
<td>Unemployment</td>
<td>32%</td>
<td>15%</td>
</tr>
<tr>
<td>Out of the labor force</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>Right-censored because of childbirth</td>
<td>9%</td>
<td>26%</td>
</tr>
<tr>
<td>Right-censored because of training program</td>
<td>4%</td>
<td>10%</td>
</tr>
<tr>
<td>Right-censored because of observation window</td>
<td>15%</td>
<td>20%</td>
</tr>
<tr>
<td>Average semesterly wage</td>
<td>SEK 82,800</td>
<td>SEK 80,200</td>
</tr>
</tbody>
</table>

Table 4: Course Characteristics: Unemployed Before (Potential) Participation

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Receive grant</td>
<td>88%</td>
</tr>
<tr>
<td>More than 25% Mathematics</td>
<td>9%</td>
</tr>
<tr>
<td>More than 25% Swedish or English</td>
<td>32%</td>
</tr>
<tr>
<td>Some orientation course</td>
<td>27%</td>
</tr>
<tr>
<td>More than 25% other courses</td>
<td>86%</td>
</tr>
</tbody>
</table>

lower employment rate of Non–Scandinavian five years after maternity leave (see Table 5) and a lower wage once their are employed. This applies to both, participants and non-participants. The lower employment rate finds its counterpart in a higher rate of being out–of–the–labor–force. Another remarkable difference can be found in a lower probability of Non–Scandinavian to receive a grant (73% vs. 88%) (see Table 6). In addition, once they participate, they tend to study Swedish or English and are more likely to follow orientation courses compared to Scandinavian women.

Women who are out–of–the–labor–force at some point after maternity leave display
Table 5: Evaluation Sample: Non–Scandinavian Unemployed Before (Potential) Participation

<table>
<thead>
<tr>
<th>Employment states 5 years after maternity leave: (Excluding participants who still need to finish Komvux)</th>
<th>participants</th>
<th>nonparticipants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employment</td>
<td>29%</td>
<td>20%</td>
</tr>
<tr>
<td>Unemployment</td>
<td>30%</td>
<td>16%</td>
</tr>
<tr>
<td>Out of the labor force</td>
<td>8%</td>
<td>8%</td>
</tr>
<tr>
<td>Right-censored because of childbirth</td>
<td>9%</td>
<td>22%</td>
</tr>
<tr>
<td>Right-censored because of training program</td>
<td>7%</td>
<td>13%</td>
</tr>
<tr>
<td>Right-censored because of observation window</td>
<td>18%</td>
<td>21%</td>
</tr>
<tr>
<td>Average semesterly wage</td>
<td>SEK 80,100</td>
<td>SEK 77,700</td>
</tr>
</tbody>
</table>

Table 6: Course Characteristics: Non–Scandinavian Unemployed Before (Potential) Participation

Receive grant	73%
More than 25% Mathematics	11%
More than 25% Swedish or English	55%
Some orientation course	36%
More than 25% other courses	54%

quite a different labor market behavior compared to those who are unemployed (see Table 7). Our sample consists of around 19,000 women of whom only 3% participate in Komvux. Of the participants, 40% are in employment 5 years after parental leave, whereas 17% are unemployed. In contrast 28% of the nonparticipants are in employment and 4% unemployed. It is noteworthy that the proportion of Scandinavian is lower among the participants than among the nonparticipants and that right censoring due to participation in a labor market training program among the nonparticipants is particularly low with 2%. The wage difference is comparable to the unemployment sample. Similarly comparable is the observations that participants have less often a child (9%) than nonparticipants (26%)
Table 7: Evaluation Sample: Out–of–the–Labor–Force Before (Potential) Participation

<table>
<thead>
<tr>
<th></th>
<th>participants</th>
<th>nonparticipants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country of origin:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scandinavian</td>
<td>78%</td>
<td>89%</td>
</tr>
<tr>
<td>Employment states 5 years after maternity leave: (Excluding participants who still need to finish Komvux)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employment</td>
<td>40%</td>
<td>28%</td>
</tr>
<tr>
<td>Unemployment</td>
<td>17%</td>
<td>4%</td>
</tr>
<tr>
<td>Out of the labor force</td>
<td>9%</td>
<td>12%</td>
</tr>
<tr>
<td>Right-censored because of childbirth</td>
<td>9%</td>
<td>26%</td>
</tr>
<tr>
<td>Right-censored because of training program</td>
<td>3%</td>
<td>2%</td>
</tr>
<tr>
<td>Right-censored because of observation window</td>
<td>22%</td>
<td>28%</td>
</tr>
<tr>
<td>Average semesterly wage</td>
<td>SEK 83,000</td>
<td>SEK 80,900</td>
</tr>
</tbody>
</table>

Table 8: Course Characteristics: Out–of–the–Labor–Force Before (Potential) Participation

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Receive grant</td>
<td>69%</td>
</tr>
<tr>
<td>More than 25% Mathematics</td>
<td>11%</td>
</tr>
<tr>
<td>More than 25% Swedish or English</td>
<td>38%</td>
</tr>
<tr>
<td>Some orientation course</td>
<td>27%</td>
</tr>
<tr>
<td>More than 25% other courses</td>
<td>76%</td>
</tr>
</tbody>
</table>

With respect to the course characteristics (see Table 8), it should be noted that a smaller percentage of the out–of–the labor market sample receives a grant compared to the unemployment sample, which is in accordance to the grant regulations (see section 2). In addition, one should note that a slightly higher percentage attends courses of elementary skills like mathematics and English and Swedish.\(^\text{10}\)

\(^\text{10}\) Additional descriptive statistics on the evaluation samples can be found in the Appendix.
4 Estimation Method and Implementation

We apply the widely used conditional difference-in-differences estimator (CDiD) in order to estimate average treatment-on-the-treated effects (ATT; see for example Heckman, Ichimura, Smith and Todd 1998, and Bergemann, Fitzenberger and Speckesser 2008). It has been shown that this estimation method is very well suited to handle selectivity issues which are common in evaluation studies using nonexperimental data (see Heckman, Ichimura, Smith and Todd, 1998 and Smith and Todd, 2005). The conditional difference-in-differences estimator combines matching with taking difference-in-differences. The matching part of this estimation approach controls for selection on observables. Here, we implement matching by estimating a propensity score for participation in Komvux, which we then use in our local linear kernel estimation in order to match treated individuals to nonparticipants. 11

We only match treated to non-treated who gave birth in the same semester and have the same employment status in the semester before the treated go into Komvux. 12 These two conditions enhance the likelihood that the individuals face the same labor market conditions at the time around birth and they experience the same labor market dynamics shortly before going in Komvux. It has been shown that it is essential to take these conditions into account in order to receive reliable estimates for treatment parameters (see for example Heckman and Smith 1999). We estimate the propensity score on the basis of a parametric probit where we include time-invariant characteristics such as age in 1996, number of children, education, origin, and the income of the partner in the first semester of 1996.

11 We use Silverman’s Rule of Thumb for the bandwidth choice (Silverman 1986). A sensitivity analysis showed that the results do not change when using half or double of the bandwidth.

12 In our application of this approach, we found that those women, who go into Komvux immediately after parental leave are very similar in terms of their treatment effect to those who are unemployed. We therefore included those to the unemployment sample but naturally then conditioning on being in parental leave in the semester before.
We consider selection on time invariant unobservable characteristics by implementing the difference-in-differences estimator in matched samples. The pre-program difference is calculated as an average of the two semesters before birth. Our inference uses a bootstrap approach with 200 resamples to take account of the estimation error in the propensity score. It has been shown that bootstrapping provides a consistent estimator of the sampling variability of the estimator even if matching is based on closeness in the estimated propensity score, see Heckman, Ichimura Smith and Todd (1998) for an asymptotic analysis of kernel based treatment estimators. Abadie and Imbens (2006) show that the bootstrap is in general not valid for nearest neighbor matching due its extreme nonsmoothness.

We use two different outcome variables, employment rate and semesterly wages. When estimating the treatment effect on wages, we condition on the treated and the matched non-treated to be employed – otherwise we would not observe their wages. By conditioning on the employment status we are able to avoid problematic settings, for example assuming a wage/income of 0, for those individuals that are not employed. Such an imputation would make it difficult to interpret the estimates of the treatment parameters as productivity effects, which we, however, aim at. The conditioning, however, implies that we only estimate the treatment effect on wages for those treated that we observe to be employed before and after the participation in Komvux.

Finally, it should be noted that both entry in an ALMP training program and having another child are treated as a censoring event, i.e. starting from this point on, the individuals are not included anymore in the treatment or non-treatment group.

We conducted a large number of additional sensitivity analysis concerning specific settings of our approach. For example, treating all types of participation in ALMP as censoring events (instead of being unemployed) does not change the results. Furthermore, we checked how the participation definition of being in Komvux influences the results. When including women who only follow Komvux for one semester or for less than 350 hours into the con-
trol group the results stay the same. The effects become somewhat smaller when including courses that last for more than 4 semesters. Finally, we also checked how sensitive the results are with respect to the time-aggregation of the different labor market spells within a semester into semesterly outcomes (see Appendix concerning details of these). It turns out that the evaluation results are also very stable concerning changes of these settings. For example, it does not matter whether one gives priority to unemployment or employment, when there are overlaps of these two spell types.

5 Empirical results

We discuss the estimation results by way of graphical illustrations, see Figures 1 to 7. The basic set up of the figures is the following: The thick curved line displays the CDID–estimates relative to the start of participation. The dotted line around shows the 95% confidence–interval which is estimated with the aid of 200 bootstrap resamples. The success criterion is either the employment probability or wages.

The time at which the evaluation starts depends on the success criterion. For the employment rate we are able to estimate the treatment effect starting immediately when the individuals enter Komvux. This approach takes the view that the time in the program is lost time on the labor market. However, concerning the wage effect we have to take a different view, as the main part of the participants do not work during participation. Therefore we are only able to estimate the wage effects in case all participants have left Komvux which is in semesters 5 after the start of the participation.

\[\text{13}\text{The tables with coefficient estimates for the conditional difference–in–differences outcome equations are available upon request.}\]

\[\text{14}\text{We only document estimates that are based on at least 50 observations.}\]
Figure 1: Average Treatment–on–the–Treated Effect on Employment, if Unemployed or in Parental Leave before Participation in Komvux – Average over All Program Types

Figure 2: Average Treatment–on–the–Treated Effect on Wage, if Unemployed or in Parental Leave before Participation in Komvux – Average over All Program Types
Figure 3: ATT on Employment Probability if Unemployed or in Parental Leave before Participation in Komvux – Different Program Types
Figure 4: ATT on Half-Year Wages if Unemployed or in Parental Leave before Participation in Komvux – Different Program Types
Where possible, we present results for participating in adult education on average and also distinguish different course types. Hereby, we will look particularly whether courses that contain a significant amount of Mathematics, Swedish or English, some orientation course or a significant amount of other topics might work particularly well for the actual participating women.
We first discuss the average treatment effect for the women who went into Komvux from unemployment or directly from parental leave. The results of the estimated effects on the employment probability are shown in Figure 1. The average effect over all program types is significantly negative until 3 years after the start of the program. However, after 5 years, the treatment-on-the-treated effect becomes positive and significantly different from zero. At the end of the observation period, i.e. 6.5 years after the start of the program the participation increased the employment rate by 10 percentage points.

By contrast, the effect on the wages is already positive three years after the start of the program. Five years after the start, the wages have increased by approximately 10,000 SEK per semester due to the participation in adult education. As anticipated in Section 1, the estimated wage effect does not display the post-program dip typically encountered in studies of effects on annual earnings. This is because the latter outcome is confounded by the sluggish employment adjustment whereas the wage outcome is not. Of course, our time-aggregation into semesters may still lead to some apparent gradualness in the wage effect during the first years after participation. In any case, as a by-product of the paper,
we may conclude that wage data allow for a faster program evaluation than earnings data, if interest is in productivity effects. Unfortunately, we can not say anything about the effect on hours worked, as we do not have the necessary information. But note, as argued above, our semesterly wage variable, still reflect productivity better than annual income. In addition, as long as hours worked are the same among the treatment group and the matched controls, hours worked do not influence our results.

The estimation results by course types do not display much variation (see Figure 3 and 4). Courses with a significant amount of mathematics seem to improve employment and wages slightly less than other courses, while courses that include an orientation course seem to be slightly more beneficial. However, these differences are not significant. Notice that a comparison of ATT estimates across course types effectively amounts to a comparison of different subsets of treated individuals.

It is conceivable that certain population groups benefit more from adult education than others. We therefore estimated the treatment effect separately for Non-Scandinavian women. Indeed, the point estimates indicate mostly a slightly higher treatment effect,
although they are never significantly different from zero. The size of the subsample of Non-Scandinavian women may simply be too small for meaningful inference.

Women who are out of the labor force before attending Komvux display quite a different treatment effect pattern than women who are unemployed or in parental leave. A positive treatment effect only shows up by way of an increase of the employment probability. The size of this effect is, however, quite considerable with about 15 percentage points 5 years after the start. In contrast, the effect on wages is relatively close to zero and at no point statistically significant.

6 Calibration of a model of job search and adult education

6.1 Job search model

A major puzzle emerging from the previous section is why not more women participate in adult education. With respect to the unemployed women less than 20% per semester flow into Komvux for a reasonable time and intensity, even though entry is not restricted, and even though the average effects on the treated are quite large. Moreover, the vast majority (88%) of those who do go into Komvux for a reasonable time and intensity receive UBS or a similar grant, so it is unlikely that the low inflow is due to any rationing of income support grants.

To better understand the enrollment decision for the unemployed women, we examine the costs and benefits of different options at the individual level, using a dynamic job search model. Job search theory tries to describe the behavior of unemployed individuals in a dynamic and uncertain environment. We develop a job search model that allows for participation in adult education before finding a job, and that also takes account of other
relevant institutional and behavioral aspects of the labor market for reintegrating mothers. The model is in discrete time, with a semester as the time unit.

Consider first the process leading to employment, in absence of an adult education program, for an unemployed woman who has given birth and has completed a given amount of time in parental leave. Job offers arrive at random moments in time. If one is not employed then in every period there is a probability \(\lambda \) that an offer arrives. Jobs pay a wage \(w \). In line with the theoretical and empirical literature on search theory, we do not distinguish jobs by the weekly number of hours worked. Equivalently, we assume that all jobs are full-time jobs. Individuals do not know in advance when job offers arrive. Every time an offer arrives, the decision has to be made whether to accept it or to reject it and search further. We assume that once a job is accepted it will be kept forever at the same wage. During unemployment, per-period income \(b \) is received.

Unemployed individuals aim at maximization of their own expected present value of utility over an infinite horizon. We assume that utility is intertemporally separable and equals the instantaneous income flow \(w \) in case one works at a wage \(w \) and \(b \) in case one is out of work. Clearly, in the absence of wage dispersion, any sufficiently high fixed value of \(w \) leads to acceptance at the first possible moment.

Let \(r \) be the rate of discount (meaning that utility one period ahead has weight \(1/(1+r) \) in the current present value), and let \(R \) denote the expected present value when following the optimal strategy. We assume that the model is stationary (see e.g. Eckstein and Van den Berg, 2007). It follows that

\[
R = b + \frac{\lambda}{1+r} \max\left\{ \frac{(1+r)w}{r}, R \right\} + \frac{1-\lambda}{1+r} R
\]

(1)

We now introduce adult education into the model. Consider first the “treatment effects”
of having participated in adult education. We allow program participation to affect both the per-period probability of receiving a job offer and the wage offer. The latter reflects any productivity differences due to the human capital accumulation in adult education. The former reflects the corresponding increase in the number of suitable vacancies. It also reflects any job search assistance efforts that are made because of the program participation. For example, the case worker of the individual may make additional efforts to find a job for the individual upon finishing program participation. Richardson and Van den Berg (2008) argue that this is the major reason for the fact that unemployed individuals in Sweden have a higher exit rate to work after a spell of labor market training. We use an index i in λ_i and w_i to denote whether the structural determinant refers to the periods before ($i = 0$) or after ($i = 1$) program participation. Participation in Komvux takes 2 periods.

Now consider the program enrollment process and childbirth. We extend the model, by allowing for 4 states: K, U, E and P, denoting Komvux, Unemployment, Employment, and Parental leave, respectively. We again consider a mother without employment having just completed her spell in P. In accordance to the actual Komvux setting, we assume that she can move into K in every time period, provided that she is unemployed. For convenience we assume that the decision to enroll and the decision to accept or reject a job offer are sequential. That is, before having received any job offer in a given period, the individual decides whether to enroll or not. If the individual does not choose K then she moves into U for the rest of the semester. Since the model is stationary, the decision to go into Komvux is essentially made right after having left P. If it is not optimal to enter Komvux at that moment then it is never optimal afterwards.

Having another child is modelled as the outcome of a process during U. Specifically, during U, a birth occurs with probability ζ. Birth is followed by 2 periods in P, and then by entry into U. Also, after K, the individual moves into U. We may allow for a transition rate
from E back into U, but that would complicate the numerical analysis while for reasonable orders of magnitude the numerical results on the decision for or against K are barely influenced by it. As we shall see in the next subsection, the value of this transition rate does play a role in the calibration of the model.

During K, the woman receives income support z, while during P she receives parental leave benefits p. In K and in E, the woman incurs child care costs c.

Let R_0 denote the expected present value of U after having decided not to enroll into K, and let \tilde{R}_0 denote the present value upon leaving P, before having decided whether to enroll into K. Next, let R_1 denote the expected present value after K. Furthermore, let P_i denote the present value upon entering P, where $i = 1$ ($i = 0$) if the individual has (has not) participated in K since the birth of the previous child. Equation (1) is now replaced by the following set of Bellman equations,

$$R_i = b + \frac{\lambda_i}{1 + r} \frac{(1 + r)(w_i - c)}{r} + \frac{(1 - \lambda_i)\zeta}{1 + r} P_i + \frac{(1 - \lambda_i)(1 - \zeta)}{1 + r} R_i \quad (i = 0, 1)$$ \hspace{1cm} (2)

$$P_i = p + \frac{p}{1 + r} + \frac{1}{(1 + r)^2} R_i \quad (i = 0, 1)$$ \hspace{1cm} (3)

$$\tilde{R}_0 = \max\{ R_0 , \, z - c + \frac{z - c}{1 + r} + \frac{1}{(1 + r)^2} R_1 \}$$ \hspace{1cm} (4)

The individual chooses for K if and only if the first term in the right-hand side of (4) is smaller than the second term.

It is clear from (2) that the size of $\lambda_1 - \lambda_0$ summarizes the employment effect of K, while $w_1 - w_0$ equals the wage effect. So far, we have not considered that individuals may move from employment back into unemployment. Suppose this occurs at the rate δ. Then the steady-state employment rate equals $\lambda_i/(\lambda_i + \delta)$. The latter is a non-linear function of λ_i. At typical values of λ_i and δ (e.g. $\lambda_i = 0.1$, $\delta = 1$ per semester, resulting in steady-state employment rate values of 90%; see e.g. Ridder and Van den Berg, 2003), the
derivative of the employment rate with respect to λ_i is very small. This means that a small increase in the employment rate is mirrored by a large increase in λ_i. In particular, a small difference between the long-run employment rates of Komvux participants and Komvux non-participants may go along with a large difference $\lambda_1 - \lambda_0$. At the same time, a large difference $\lambda_1 - \lambda_0$ may imply a large difference between the present values R_0 and R_1 of the unemployed in the two groups. To see this, notice that present values assign higher weights to events in the near future. A high job offer arrival rate means a shorter average duration of the current unemployment spell, and therefore a shorter waiting time until the income flow is increased.\footnote{It is not difficult to demonstrate this formally, using the equations in this subsection.}

We can extend the model further by allowing for transitions into non-participation. The simplest way to do this is to introduce an additional exit state with corresponding exit probability, by analogy to Van den Berg (1990). Moreover, we can make it optimal for women to move into K some semesters after parental leave rather than immediately, by allowing for sources of non-stationarity into the model.\footnote{Some structural empirical studies have estimated job search models that are somewhat similar to ours, in that they allow women to choose at any time for an outside option (Frijters and Van der Klaauw, 2006) or allow for participation in training programs (Adda et al., 2006).} However, the former would lead to problems with calibrating the model (see the next subsection). The latter would complicate the model substantially, presumably without generating major additional insights (see again the next subsection). Another extension would be to allow for wage dispersion. In that case, the comparative statics effects of $\lambda_1 - \lambda_0$ and $w_1 - w_0$ are described in Van den Berg (1994) and Burdett (1981), respectively.

6.2 Calibration

In this subsection we quantify the model and we infer the implications for the enrollment decision. We quantify the variables or parameters $b, w_0, p, z, c,$ and ζ by using averages...
of the data at our disposal. Next, we quantify λ_0 from external sources, and we quantify $\lambda_1 - \lambda_0$ and $w_1 - w_0$ using the estimates from the previous section. Table 9 gives the results of this procedure. In the absence of reliable information on the discount rate r, we consider a range of values for this parameter. In general, the quantification of the model depends on a range of debatable assumptions, as does the model specification itself. It is therefore important to point out in advance that the main qualitative conclusions are very robust with respect to all this.

We now describe in some detail the subsamples used to quantify $b, w_0, p, z, c,$ and ζ. The variable b is taken to be the average Unemployment Insurance (UI) benefits level among women who receive UI. Some individuals without work do not qualify for UI, and it is difficult to assign an income level to them. For example, their subsistence may be supported by a fraction of the income of other household members. To avoid such ad-hoc procedures, we restrict attention to UI recipients. We take the average semesterly UI receipt over semesterly U spells per individual, and we subsequently average over individuals. The parental leave benefits p and the Komvux income grant z are quantified in essentially the same way, excluding Komvux spells without any income grant. The wage rate w_0 is the average semesterly wage among women in E in the semester before the childbirth of interest. The child care costs are quantified as the average in case of having two children and using care for 40 hours per week in the year 1999. These costs only occur in case a women is in Komvux or employed. The rate ζ of bearing an additional child is taken as the semesterly average over 3 to 13 semesters after the childbirth of interest.

The observed employment states and transitions shortly before and after childbirth are not suitable for the quantification of the transition rate λ_0 from U to E, because of the dip in employment around the date of childbirth, and because spells out of work can be labor-market non-participation spells. We therefore rely on information in Albrecht, Vanden Berg and Vroman (2009) instead. They calibrate a job search model using Swedish
data from 1996, i.e. right before our Komvux-spells observation window. They distinguish between different skill levels, and for our purposes we only have to focus on low-skilled workers and low-skilled jobs. Their continuous-time transition rate from U to E equals 1.867 per year, which implies that the probability that U is left within 6 months equals 0.607. We take this to equal our λ_0. In order to calculate λ_1 from the employment effect of Komvux as estimated in the previous section, we also need to quantify the transition rate δ from E to U. (For expositional convenience, we imposed $\delta = 0$ in our model, but this can be relaxed without computational cost, and in any case the qualitative results do not depend on this apart from the quantification of λ_1.) Following the same procedure as for λ_0, we derive from Albrecht, Van den Berg and Vroman (2009) the value of 0.0842 for δ. Subsequently, λ_1 follows from the estimation result that $(\lambda_1/(\lambda_1 + \delta)) - \lambda_0/(\lambda_0 + \delta) = 0.013$, where the latter number is the ATT estimate averaged over 5 to 13 semesters after inflow into K. This gives $\lambda_1 = 0.690$. Finally, the post-Komvux wage rate w_1 follows from the ATT estimate averaged over 5 to 13 semesters after inflow into K.

Notice that the effects of Komvux participation are quantified as average effects on the treated (ATT), whereas the other inputs for the calibration are averages over a population that includes both treated and non-treated. "Matching" evaluation methods can also be used to obtain an estimate of the average effect on the non-treated, and subsequently to obtain an estimate of the average treatment effect in the population. In the setting of the previous section this is less feasible: because of the variation in the timing of the treatment among the treated it is not clear which treated should be matched to a given non-treated. An additional complication is that the populations used to estimate the ATT are not exactly the same as those used to quantify some other calibration inputs, like b, which is estimated from actual UI benefits recipients. Nevertheless, the overlap in support of these populations and their treated and non-treated is substantial. Below we return to this issue and we examine the sensitivity of the calibration with respect to its input values.
Table 9: Calibration input values

<table>
<thead>
<tr>
<th>Input Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>unemployment benefits b</td>
<td>41,858</td>
</tr>
<tr>
<td>wage rate w_0 without Komvux</td>
<td>63,508</td>
</tr>
<tr>
<td>parental leave benefits p</td>
<td>51,651</td>
</tr>
<tr>
<td>Komvux income grant z</td>
<td>42,780</td>
</tr>
<tr>
<td>child care costs c</td>
<td>12,120</td>
</tr>
<tr>
<td>next-child birth rate ζ</td>
<td>0.03</td>
</tr>
<tr>
<td>job offer arrival rate λ_0</td>
<td>0.607</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>wage rate w_1 after Komvux</td>
<td>73,198</td>
</tr>
<tr>
<td>job offer arrival rate λ_1</td>
<td>0.690</td>
</tr>
</tbody>
</table>

Note: the units are SEK and 6 months.

Table 10 gives the results for the model outcomes, for two discount rates: 0.05 per semester and 0.20 per semester. The first value is conventional, and we take the corresponding results as our baseline calibration results. The variable $\text{EPV}(K)$ is the expected present value of choosing to enroll in Komvux, i.e. the second term in the right-hand side of (4). Clearly, the difference between R_0 and $\text{EPV}(K)$ is of particular interest, as this determines the choice for or against participation in Komvux.

The calibrated model unambiguously predicts that participation in Komvux is beneficial for the individual. Choosing for K does have two short-term disadvantages over entering U. First, $z - c < b$, so that the instantaneous income flow in K is smaller than in U. Secondly, the individual is confined to K for two periods, whereas one may be able to leave U for E during any of these periods. However, these short-term disadvantages do not offset the long-run advantages of K. Once employed, the semesterly income is about SEK 10,000 higher if one has participated in K. In present values, with $r = 0.05$, this is an increase of almost SEK 200,000, or almost 20%. From Table 10 it follows that the price to be paid for this improvement is only about SEK 50,000 of foregone earnings due to Komvux.
Table 10: Calibration results

<table>
<thead>
<tr>
<th></th>
<th>$r = 0.05$</th>
<th>$r = 0.20$</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_0</td>
<td>1064</td>
<td>294</td>
</tr>
<tr>
<td>R_1</td>
<td>1255</td>
<td>340</td>
</tr>
<tr>
<td>EPV(K)</td>
<td>1198</td>
<td>293</td>
</tr>
<tr>
<td>\tilde{R}_0</td>
<td>1198</td>
<td>294</td>
</tr>
</tbody>
</table>

Corresponding flow values:

<table>
<thead>
<tr>
<th></th>
<th>$rR_0/(1 + r)$</th>
<th>$rR_1/(1 + r)$</th>
<th>$rEPV(K)/(1 + r)$</th>
<th>$r\tilde{R}_0/(1 + r)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50.7</td>
<td>49.0</td>
<td>57.1</td>
<td>49.0</td>
</tr>
<tr>
<td></td>
<td>59.8</td>
<td>56.7</td>
<td>48.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: the units are 1000 SEK and 6 months.

The final column of Table 10 gives calibration results for a 0.20 discount rate. This is a very high value; it implies indifference between having 1 krona in 12 months from now and having $1/(1 + r)^2 = 0.69$ kronor today. With such an unrealistically high r, the individual is virtually indifferent between going into Komvux and not going into it. The future rewards of participation are then insufficiently important to offset the short-run costs. In this case, with an “average” mother being indifferent, one would expect that about half of the relevant population of mothers would benefit from Komvux, whereas the net return would be negative for the other half. As the actual Komvux inflow rate is much lower than 50%, it follows that even the $r = 0.20$ scenario is not sufficiently extreme to explain why so few mothers enter Komvux in the context of our model.\(^\text{17}\) Evidently, there are strong non-pecuniary factors that make young mothers prefer not to enter Komvux.

\(^\text{17}\)Recall that this is based on average treatment effects among the actual treated. On average, the non-treated presumably face lower treatment effects. However, with the substantial overlap of the support of the sub-populations, one would still expect that many of those who do not participate actually have positive net pecuniary returns of participation.
The alternative option of becoming unemployed or a non-participant in the labor market are more attractive because they deliver utility that is absent while being in Komvux. It is likely that this concerns the possibility to be home with the infant. Presumably, young mothers are willing to give up monetary advantages in return for being able to take care full-time of the infant after it has reached the age of one.

The option of entering Komvux can be made more attractive by increasing the income grant or by decreasing the child care costs while in Komvux. The size of the effect depends on the distribution of the unobserved utility that women attach to being able to stay home with their one-year old child. Moreover, the average treatment effects among the treated may decrease if the fraction of women entering Komvux increases.

From the discussion of the results in Table 10 it is clear that the qualitative implications of the baseline calibration are very robust to a range of assumptions. One simply needs drastically different parameter values in order to reverse the main predictions.

7 Conclusions

Among women who are without work after childbirth, participation in adult education has significant positive causal effects on their labor market prospects. Some time after participation both the wage rate and the employment rate are on average higher than in the counterfactual situation in which the mother does not follow adult education. This is important because women without work after childbirth sometimes do not qualify for labor market training and other programs to bring unemployed back to work. In such cases, adult education may be the only skill-enhancing program available. Moreover, direct costs of adult education are generally low or absent. In sum, adult education is a useful and accessible program to prevent young mothers from entering a downward spiral of joblessness and skill loss.
The positive effects of adult education have not led to a massive inflow into the program. To understand this, we calibrate a dynamic job search model that includes adult education as an option. We use income data in employment, unemployment, parental leave, and in adult education, as well as data on child care, and the estimated effects of adult education, to quantify the model. We find that adult education increases the individual’s total expected discounted income. For an average individual, the short-run costs (lock-in time in education; child care while following education) are by far outweighed by the long-run advantages in terms of income. We conclude that there are strong non-pecuniary factors that make young mothers prefer not to enter adult education, notably the possibility to be home with the infant. Young mothers are willing to give up monetary advantages in return for being able to take care full-time of the infant after it has reached the age of one.

The option of entering adult education can be made more attractive by increasing the income grant or decreasing the child care costs while in education. This is an interesting topic for further research. For example, regional or temporal variation in child care costs and in the availability of income grants may be used to assess the role of this in the enrollment and the effects of adult education.

The link between the conditional difference-in-differences estimates of the treatment effects on the one hand and the economic model on the other hand led to some additional insights. First of all, in general, small effects on the employment probability may go along with larger effects on the expected discounted value of program participation and also with larger effects on the exit rate to work. This is because employment rates are typically unresponsive functions of the job offer arrival rate, and because present values assign higher weights to income in the nearest future than to income in the long run.

Secondly, wage rate outcomes do not display the post-program dip that is typically encountered in studies of effects on annual earnings. This is because the latter outcome is confounded by the sluggish employment adjustment whereas the wage rate outcome is
not. It follows that wage data allow for a faster program evaluation than earnings data, if interest is in productivity effects.
References

Heckman, J.J. and J.A. Smith (1999), “The pre-program earnings dip and the determinants of participation in a social program: implications for simple program evaluation

